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Abstract u Both nonequilibrium and equilibrium models were proposed 
to explain the optimal biological response to a set of congeners with re- 
spect to the oil-water partition coefficient (P). A detailed analysis of the 
kinetic model proposed by Hansch demonstrates the bilinear form of the 
model, with the initial slope of the logarithm of the concentration for 50% 
receptor binding uersus log P having a slope of greater than one. This 
result is in contrast to the equilibrium model for an initial slope of less 
than one. Thus, a criterion is established for deciding whether equilibrium 
or nonequilibrium processes apply. 
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Hansch and Clayton (1) documented numerous exam- 
ples of an optimal biological response to a set of congeners 
with respect to the oil-water partition coefficient. That is, 
a plot of the logarithm of the concentration at  which a 
standard biological response is elicited uersus the loga- 
rithm of the partition coefficient exhibits a maximum. 
Hansch and coworkers (2) attributed this maximum to 
nonequilibrium conditions resulting from transport across 
a series of water-oil membranes, and a kinetic model was 
developed to account for the maximum in the partition 
coefficient (2). Rather than extract model parameters from 
the experimental data, they fitted the data empirically 
with parabolic equations. While the parabolic equations 
have no direct relationship to the model, they are a con- 
venient mathematical form for regression analysis. 

McFarland (3) and later Kubinyi (4) employed a prob- 
ability approach to account for the optimum in the parti- 
tion coefficient, and they derived bilinear equations to fit 
the data. Higuchi and Davis (5) constructed an equilibrium 
model as an alternative explanation for the optimal bio- 
logical response, and their model equation also has a bi- 
linear form. Kubinyi (6 )  showed that bilinear equations 
fit the data better than parabolic equations. This finding 
is comforting to the model builder since none of the pro- 
posed models predicts a parabolic equation. 

This paper compares the merits of the various models 
and proposes ways of determining whether equilibrium or 
nonequilibrium processes are responsible for the maximum 
with respect to the partition coefficient. First, the equi- 
librium and probability models are examined. Then the 
kinetic model of Hansch and coworkers (2) is examined in 
detail, and its bilinear form is demonstrated. The kinetic 
model reduces to the equilibrium model a t  infinite time 
and is consistent with what is known about transport. 
Difficulties in the assessment of the probability model 
predictions also are discussed. Time is not explicitly 
mentioned in the development of this model, and it ap- 
pears to be a random walk-type model with probabilities 
obtained from the equilibrium. 

MODELS 

Equilibrium and Probability Models-For the models considered, 
the arrangement of membranes can be represented as in Fig. 1. An 
aqueous reservoir of the active compound is in contact with a series of 
n pairs of lipid-water membranes or compartments. In the last aqueous 
compartment, binding to a receptor occurs. The amount bound to the 
receptor is proportional to C2,,+1Pd, where P is the lipid-water partition 
coefficient, Czn+1 is the concentration in the nth aqueous compartment, 
and a is a constant near unity that expresses a possible difference in the 
lipophilicity between the receptor site and the lipid compartment. Ku- 
binyi (4 )  showed that the equilibrium model of Higuchi and Davis (5) 
could be expressed as: 

a P" 
cr = i g F  (Eq. 1 )  

where C, is the concentration at  the receptor site, a is a proportionality 
constant, and is the ratio of the lipid volume to the aqueous membrane 
volume. Kubinyi (4) modified McFarland's (3) probability model to 
give: 

(Eq. 2 )  

where b is the proportionality constant. The slopes of log C, uersus log 
P predicted by these two models differ. The initial slopes are a and n + 
a for the equilibrium and probability models, respectively; the final slopes 
are a - 1 and a - n ,  respectively. In the equilibrium model, there is no 
unique maximum in P if a = 1. 

Kinetic Model and Solutions-The kinetic model as represented in 
Fig. 1 is characterized by the water-to-lipid rate constant, k, by the 
lipid-to-water rate constant, 1 ,  where P = k / l ,  and by the following: 

(Eq. 3) 

dCj k 21 k -= -C. - -C. + -Cj+l i = 2 , 4 , .  . . 2n  (Eq. 4)  
PVW PVW 

1 - 1  
dt  PVw 

1 
Cj-1 - 2k Ci + - Ci+l i = 3,5 ,  . . . 2n  - 1 (Eq. 5 )  

d C i -  1 
d t  V ,  vw v w  

(Eq. 6) 

Here y is the ratio of the volume of the aqueous reservoir to the volume 
of the aqueous compartment, Vw, and /3 is the ratio of the volume of the 
lipid compartment to Vw. Equations 3-6 can be written in matrix nota- 
tion as: 

c = 3-C (Eq. 7 )  

-i 

-I 
Figure 1-Sequence of lipid-water barriers for transport from reservoir 
to  receptor. 
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Figure 2-Effect of time on Q(r) for n = I ,  p = 1 ,  and y = 1 .  

where C is the time derivative of the 2n + 1 concentrations, C, and 3 is 
the 2n + 1 X 2n + 1 matrix relating C to C. If the eigenvalues of 3 are all 
distinct (7), then C = AeXt is a solution where A, is the eigenvector cor- 
responding to the eigenvalue A,. The general solution for C is given 
by: 

C =  f l A , e X ~ t  0%. 8 )  
2n+l  

,=1 

where the f i  values are determined by the initial conditions: 

CI(0) = C(0) (Eq. 9) 

and: 

C,(O)=O i = 2 , 3 ,  ... 2 n + l  (Eq. 10) 

The quantity of interest is Czn+l(t), which is proportional to the amount 
bound at  the receptor. If 

A(50) = aPC'&'il(t) (Eq. 11) 
where C$Til(t) is the concentration in the receptor compartment for 
which half of the sites, A("), are occupied, then Cf'O)(O), the initial con- 
centration necessary to give half-binding at  time t and for the partition 
coefficient, P ,  can be estimated. That is: 

(Eq. 12) 

since CSn+,(t) = Cl(O)Q,(t), where Qn(t)  is independent of the initial 
concentration and represents the concentration fraction of initial drug 
in the receptor compartment. Thus, a plot of log Qn uersus log P reflects 
the dependence of CtO(0) on P except for the additional slope a. 

The solution (Eq. 8) of Eq. 7 is obtained easily for n = 1: 

C A T )  = CI(O)QI(T) (Eq. 13) 

where: 

Q ~ ( T )  = [2 + Pe-(p+2)r  - ( P  + 2 ) e c P r ] / ( 2 P  + 4) (Eq. 14) 

For this solution, y = f i  = 1, V ,  = 1, and 7 = It. For ashort  time, Q ~ ( T )  
becomes: 

1 
lim Q1(r) = - P T ~  (Eq. 15) 
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Figure 3-Effect of n on Q(T)  for 7 = 10, 0 = I ,  and y = 1 .  

which is linear in P and quadratic in 7. For values of  n > 1 ,  Eq. 8 was 
solved numerically (8); the results are shown in Figs. 2 and 3, where the 
bilinear nature of the function is clearly seen. The initial slopes (P << 1) 
are proportional to n ,  and the final slopes ( P  >> 1) are all -1. As 7 in- 
creases, the initial slopes all approach zero, the equilibrium value, and 
the position of the maximum with respect to P decreases. The fact that 
all of the final slopes are -1 is just a consequence of equilibrium. The 
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Figure 4-Effect of 0 on Q(r) for n = 2 and y = 1 
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(6) modification of Eq. 2 must be examiried. He relaxed the parameter 
restrictions in Eq. 2 by writing: 
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Figure 5-Effect of y on Q(T) for n = 2 and p = 1. 

position of the maximum increases only slightly with n. In Figs. 4 and 5, 
the results are shown for different values of p and y. The decrease in Q ( T )  
with an increase in the partition coefficient occurs a t  higher partition 
coefficient values for the smaller values of T. This decrease occurs a t  lower 
partition coefficient values for larger /3 or smaller y values. 

DISCUSSION 

The kinetic model accounts for transport in the steady-state approx- 
’ imation for diffusion across unstirred boundary layers a t  lipid-water 
interfaces, and it ignores differences in diffusion rates between the lipid 
phase and the aqueous phase. However, this model does approximate the 
effects of nonequilibrium on the concentration at  the receptor site. The 
kinetic model predicts a time dependence for P,,, where P,, decreases 
with time. The probability model and the kinetic model both predict an 
initial slope of n + a for the dependence of log l/Cpo(0) on log P, where 
the equilibrium model predicts an initial slope of a. Thus, if the initial 
slope is greater than or equal to one, nonequilibrium processes obtain; 
if the slope is less than one, the equilibrium model can account for the 
observations. To understand the nonequilibrium models better, Kubinyi’s 

where x: andy are freely adjustable instead of being related by y = 2n (n 
= 1, 2,. , .) and z = n + a where 0 5 a I 1. Thus, Eq. 16 becomes a 
mathematical form to fit data rather than an equation to extract the 
model parameters n and a. Most of the data chosen by Kubinyi (6) to be 
fit by Eq. 16 had z 5 1. This finding indicates that the equilibrium model 
is probably the better choice of operative process even though, with only 
one adjustable parameter, the data are not as well fit by Eq. 1. 

Hansch and Clayton (1) summarized a variety of possible mechanisms 
to account for the portion of the curve that has the negative slope in log 
P. However, as they pointed out, biological data for molecules with large 
P values are difficult to interpret because of the low water solubility. 
Yalkowsky and Flynn (9) showed that the maximum steady-state flux 
drops off as P-6, where 6 is similar in magnitude to a and is an indicator 
of the decrease in water solubility with increased partition coefficient. 
Their model is essentially one of water layers (and, hence, water solu- 
bility) controlling the transport for molecules with high partition coef- 
ficients. Since binding to the receptor is proportional to P“, one expects 
a final slope near zero and an initial slope of 1 + a for cases where their 
model is applicable. 

Since biological data are somewhat difficult to obtain and interpret 
for large partition coefficient values, the data for smaller partition coef- 
ficient values are interpreted most confidently. From the kinetic model 
analysis presented in this report, it is probable that nonequilibrium 
processes are involved when the initial slope is greater than one and that 
equilibrium processes obtain when this slope is less than unity. However, 
the kinetic model at longer times has a wide maximum, and the model 
could be stretched to fit data with initial slopes of less than one. Biological 
data covering a wide range of partition coefficients are needed to dis- 
tinguish between nonequilibrium and equilibrium processes, especially 
in the small partition coefficient region. 
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